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Abstract
Ambient ozone uptake by plant stomata degrades ecosystem and crop health and alters
local-to-global carbon and water cycling. Metrics for ozone plant damage are often based solely on
ambient ozone concentrations, overlooking the role of variations in stomatal activity. A better
metric is the cumulative stomatal uptake of ozone (CUO), which indicates the amount of ozone
entering the leaf over time available to cause physiological damage. Here we apply the NOAA
GFDL global earth system model to assess the importance of capturing interannual variations and
21st century changes in surface ozone versus stomatal conductance for regional mean CUO using
20-year time-slice simulations at the 2010s and 2090s for a high-warming climate and emissions
scenario. The GFDL model includes chemistry-climate interactions and couples atmospheric and
land components through not only carbon, water, and energy exchanges, but also reactive trace
gases—in particular, ozone dry deposition simulated by the land influences surface ozone
concentrations. Our 20-year time slice simulations hold anthropogenic precursor emissions,
well-mixed greenhouse gases, and land use distributions fixed at either 2010 or 2090 values. We
find that CUO responds much more strongly to interannual and daily variability in stomatal
conductance than in ozone. On the other hand, long-term changes in ozone explain 44%–90% of
the annual CUO change in regions with decreases, largely driven by the impact of 21st century
anthropogenic NOx emission trends on summer surface ozone. In some regions, increases in
stomatal conductance from the 2010s to 2090s counteract the influence of lower ozone on CUO.
We also find that summertime stomatal closure under high carbon dioxide levels can offset the
impacts of higher springtime leaf area (e.g. earlier leaf out) and associated stomatal conductance
on CUO. Our findings underscore the importance of considering plant physiology in assessing
ozone vegetation damage, particularly in quantifying year-to-year changes.

1. Introduction

Plant stomata control the uptake of carbon dioxide
for photosynthesis and release of water vapor into the
atmosphere through transpiration. Ambient ozone
diffuses through open stomata and reacts quicklywith
fluids and tissues once inside the leaf (Laisk et al 1989,
Wang et al 1995). Stomatal uptake of ozone serves as
an important removal pathway of tropospheric ozone
(Wesely and Hicks 2000, Fowler et al 2009, Clifton
et al 2020a), which is a potent greenhouse gas, air

pollutant, and a strong lever on the atmospheric oxid-
ation capacity. Oxidation inside the leaf following sto-
matal ozone uptake causes cell death and decreases
carbon fixation, leading to necrosis, reduced eco-
system productivity and carbon storage over time
(Fiscus et al 2005, Ainsworth et al 2012), and lost
crop yields (Mauzerall and Wang 2001, Morgan et al
2003, Feng et al 2008, Tai et al 2014, McGrath et al
2015). By changing local-to-global carbon cycling as
well as altering energy and water exchanges, stomatal
ozone uptake influences meteorology, climate, and
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air quality (Sitch et al 2007, Lombardozzi et al 2015;
Super et al 2015, Li et al 2016, 2018, Sadiq et al 2017,
Zhou et al 2018).

Changes in ecosystem functioning and land-
atmosphere exchanges due to ozone plant damage
depend on the cumulative stomatal uptake of ozone
(CUO) (e.g. Musselman et al 2006). While the argu-
ment for including CUO in ozone plant damage met-
rics is decades old (Reich 1987,Musselman andMass-
man 1999, Matyssek et al 2004, Paoletti and Man-
ning 2007), damage or risk is often evaluated based
solely on metrics of ambient ozone concentrations
(McLaughlin et al 2007, Hollaway et al 2012, Sun et al
2012, Tai et al 2014, Lapina et al 2014, 2016,Mills et al
2018) given the paucity of observational constraints
on CUO. Recent work, leveraging a gridded surface
ozone observational product (Schnell et al 2014) and
observedwater fluxes from tower sites (Pastorello et al
2017), highlights the limitations of concentration-
based metrics in capturing interannual and spatial
variations in CUO across 100+ sites in the United
States and Europe (Ducker et al 2018), in agree-
ment with the findings of work at individual sites
(e.g. Gerosa et al 2004) and modeling studies (Mills
et al 2011, De Marco et al 2015, Anav et al 2016).

Ozone damage to plants depends not only on
CUO but also on the plants’ ability to detoxify and
respond to ozone (Musselman and Massman 1999,
Massman et al 2000, Musselman et al 2006, Pao-
letti and Manning 2007, Matyssek et al 2008). For
example, plants scavenge some of the ozone inside
the leaf such that a certain amount of ozone does
not pose a risk to the plant other than by deplet-
ing detoxification reserves. Detoxification has been
shown to depend on environmental conditions and
species (e.g. Musselman et al 2006), and recently on
the ratio of dry leaf mass to leaf area in woody plants
(Feng et al 2018), but is highly uncertain, especially
at regional scales (Karnosky et al 2007, Lombardozzi
et al 2015, Jolivet et al 2016).

Parameterizations that include plant detoxifica-
tion and responses to ozone in regional-to-global
models are used to assess the impacts of CUO on
crop yields, carbon and water cycling, climate, and
air quality (Sitch et al 2007, Lombardozzi et al
2015, 2018, Li et al 2016, 2018, Sadiq et al 2017, Oliver
et al 2018, Arnold et al 2018, Unger et al 2020, Lei et al
2020). Most studies employing damage parameteriz-
ations in large-scale models probe either the carbon
and water cycling impacts of ‘turning on’ schemes, or
the impacts of changes in either surface ozone or sto-
matal conductance (gs). While some of these studies
examine the impacts of changes in both ozone and gs,
they do not separate how changes in ozone versus gs
drive the changes in impacts.

Because surface ozone and gs both influence CUO
but respond to meteorology and the land surface dif-
ferently, there may be individual changes in ozone
and gs that counteract and limit, or compound and

amplify, changes in CUO. Indeed Ronan et al (2020)
use the Ducker et al (2018) CUO dataset to illustrate
that recent reductions in ozone air pollution at sites
in the US and Europe due to NOx (= NO + NO2)
emission controls do not benefit plants due to offset-
ting increases in gs. Other work modeling CUO sug-
gests counteracting changes in gs and surface ozone
on CUO at present day (Anav et al 2019) and by
the end of the 21st century (Klingberg et al 2011)
over Europe. These studies use uncoupled modeling
frameworks, where meteorology from a regional cli-
mate model is fed into a regional chemical trans-
port model and gs used for CUO is inconsistent with
gs used for determining ambient ozone through dry
deposition as well as with gs used for energy andwater
exchanges. Here, we use a new version of a global
earth system model with chemistry-climate interac-
tions and self-consistent land-atmosphere exchanges
of carbon, water, heat, and reactive gases including
ozone (Paulot et al 2018, Clifton et al 2020b) to
explore the roles of surface ozone versus gs in driv-
ing interannual and long-term variability in CUO.
In particular, we show a critical role for interannual
variations and 21st century changes in gs on regional
mean CUO.

2. Methods

We use the NOAA GFDL global chemistry-
climate model AM3, which includes stratosphere-
troposphere gas-phase and aerosol chemistry
(Donner et al 2011,Naik et al 2013). AM3 is the atmo-
spheric component of the fully coupled atmosphere-
ocean general circulation model CM3, which was
used and evaluated extensively in the 5th phase of the
Coupled Model Intercomparison Project (CMIP5).
The underlying land surface model of AM3/CM3 is
LM3 (Shevliakova et al 2009, Milly et al 2014), which
includes water, energy, and carbon cycling, vegeta-
tion dynamics and land use and management, and is
coupled to atmospheric dynamics and radiation via
surface albedo, surface roughness, and exchanges of
water, energy, and momentum. We use a new ver-
sion of AM3 called AM3DD where the land and
tropospheric chemistry are coupled through dry
deposition of reactive gases like ozone (Paulot et al
2018, Clifton et al 2020b). Because AM3 and LM3
are fully coupled, we refer to the GFDL model as an
earth system model (note that we reduce computa-
tional expense by forcing sea surface temperatures
and sea ice).

We examine time-slice AM3DD simulations of
RCP8.5 at the 2010s and 2090s. RCP8.5 is an emis-
sions and climate scenario designed by CMIP5 for the
IPCC Fifth Assessment Report (Moss et al 2010, van
Vuuren et al 2011). Each AM3DD simulation con-
tains 20 years. Well-mixed greenhouse gases are pre-
scribed at 2010 and 2090 values for the 2010s and
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2090s simulations, respectively, and sea surface tem-
peratures and sea ice are prescribed with 2010s or
2090s decadal averages from three ensemblemembers
of transient RCP8.5 simulations from CM3. Anthro-
pogenic pollutant emissions are constant from year
to year throughout each simulation, fixed at 2010 or
2090 levels. Soil NO emissions are prescribed and
constant from year to year (Naik et al 2013). Iso-
prene emissions are calculated online with a ver-
sion of MEGAN (Guenther et al 2006, Emmons et al
2010, Rasmussen et al 2012). LightningNO emissions
are also calculated interactively; global lightning NO
emissions scale with global surface temperature (John
et al 2012).

Central to the land-atmosphere exchanges of
water, energy, and reactive trace gases in AM3DD is
the stomatal resistance (Rs) simulated by LM3 (note
that a resistance is the inverse of a conductance). The
prognostic variable Rs for water vapor (m s−1) is cal-
culated from net photosynthesis (Anet) via the Leun-
ing (1995) model:

Rs =
1

LAI

ps
RTleaf

(
1+ ds

d0

)
m

ci −Γ

Anet
(1)

The parameter R is the universal gas constant
(J mol air−1 K−1); T leaf is leaf temperature (K);
ps is surface pressure (Pa); m is an empirical con-
stant (unitless); ds is the vapor pressure deficit (kg
H2O kg air−1); d0 is an empirical constant (kg H2O

kg air−1); ci is carbon dioxide concentration internal
to the leaf (mol CO2 mol air−1); Γ is carbon dioxide
compensation point of assimilation in the presence
of dark respiration (mol CO2 mol air−1); LAI is leaf
area index (m2 m−2). Anet (mol CO2 m−2 s−1) is cal-
culated following Farquhar et al (1980) and Collatz
et al (1991, 1992). Anet is only calculated when LAI
and photosynthetically active radiation at the canopy
top are greater than zero.

The variable gs is scaled by a fractional parameter
that balances the water supply from the roots with
demand when supply is less than demand (Milly et al
2014). Theminimum value of gs is 0.01 mol m−2 s−1,
and the maximum is 0.25 mol m−2 s−1 (both applied
before conversion to m s−1). gs of ozone is estimated
by scaling gs by the ratio of the diffusivity of ozone by
the diffusivity of water vapor.

CUO requires concurrent estimates of the effect-
ive stomatal conductance (egs) and ambient ozone
concentrations. egs is the contribution of stomatal
uptake to the ozone deposition velocity (vd), a
measure of the efficiency of the total ozone depos-
itional sink irrespective of surface ozone concen-
tration, in velocity units. Hereinafter, we will use
the term gs to represent the conductance for ozone
diffusion through stomata, whereas egs to repres-
ent the strength of the removal of ozone by sto-
mata. The variable vd (m s−1) is given by equa-
tion (2) in the dry deposition parameterization
in AM3DD:

vd =

Ra +
1

1
Rb,veg+

1
1

Rs+Rm
+ 1

Rcut

+ 1
Rb,veg+Rstem

+ 1
Rac+Rb,soil+Rsoil



−1

(2)

This parameterization is based on a resistance
network analogous to the treatment of resistances
in Ohm’s law for electrical circuits. The variable
Ra is the resistance to turbulent transport of ozone
from the bottom of the atmospheric model to can-
opy height. In our big-leaf parameterization, all
leaves are at canopy height. The variable Rb,veg

is the resistance to transport through the quasi-
laminar boundary layer around vegetation, Rm is
the resistance to ozone reactions inside the leaf, Rcut

is the resistance to ozone uptake by leaf cuticles,
Rstem is the resistance to ozone uptake by stems,
Rac is the resistance to turbulent transport through
the canopy to the soil, Rb,soil is the resistance to
transport through the quasi-laminar boundary layer
around soil, and Rsoil is the resistance to ozone

uptake by soil. Descriptions of Rm, Rcut, Rb,veg,
Rstem, Rac, and Rb,soil can be found in Clifton et al
(2020b).

CUO (mmol O3 m−2) should be estimated at a
frequency that captures surface ozone and egs diel
cycles. We calculate CUO for the 2010s and 2090s as
the cumulative sum of hourly stomatal ozone fluxes
(Fstom,O3 ;mmol m−2 h−1) over a year. Fstom,O3 is
calculated by multiplying hourly fields of ozone in
mmol m−3 and egs in m h−1. Fstom,O3 follows Fick’s
law and assumes no ozone internal to the leaf given
ozone’s high reactivity with internal fluids and tissues
(Laisk et al 1989, Wang et al 1995, Omasa et al 2000,
Sun et al 2016).

We do not employ a detoxification threshold for
ozone damage here. A threshold is primarily used to
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Figure 1. Regional mean impact of interannual and daily variability of either surface ozone or effective stomatal conductance
(egs) on annual CUO. Each symbol represents the percentage difference in annual CUO for each year. In particular, year-specific
annual CUO is subtracted from annual CUO calculated with year-specific hourly-varying egs but multiyear monthly mean diel
cycles of ozone (∆CUOO3

) or annual CUO calculated with year-specific hourly-varying ozone but multiyear monthly mean diel
cycles of egs (∆CUOegs ). Only grid cells with >50% land area are included.

account for the plant’s ability to detoxify ozone after
it enters stomata and pertains more to the estimation
of plant damage fromCUO than the amount of ozone
actually entering the leaf. The focus of our paper is not
to quantify plant damage, but instead to quantify how
variability in egs and ambient ozone concentrations
affect CUO.

We quantify the influence of daily and interan-
nual variations in surface ozone versus egs on CUO
by calculating CUO from hourly archived fields of
egs and ozone from AM3DD (Clifton 2020). We
identify the impact of variations in ozone on CUO
by subtracting year-specific annual CUO from annual
CUO calculated with year-specific hourly-varying egs
but multiyear monthly mean diel cycles of ozone.
In other words, for each year (y), the difference in

annual CUO is:∆CUOO3
(y) =

8760∑
h=1

O3 (h) egs (y,h)−
8760∑
h=1

O3 (y,h) egs (y,h) where the overbar is the mul-

tiyear monthly mean diel cycle transposed into an
hourly array for all hours in a year, and h is
hour. To identify the impact of variations in egs on
CUO, we subtract year-specific annual CUO from
annual CUO calculated with year-specific hourly-
varying ozone but multiyear monthly mean diel

cycles of egs (∆CUOegs(y) =
8760∑
h=1

O3 (y,h) egs (h)−
8760∑
i=1

O3 (y,h) egs (y,h)).

To identify how changes in egs versus surface
ozone alter CUO over the 21st century, we calcu-
late CUO in two ways: (i) with multiyear monthly
mean diel cycles of ozone from the 2010s, but mul-
tiyear monthly mean diel cycles of egs from the
2090s (CUOO3,2010) and (ii) with multiyear monthly

mean diel cycles of egs from the 2010s, but multi-
year monthly mean diel cycles of ozone from the
2090s (CUOegs,2010). Inferring the role of changes in
egs versus ozone with our offline calculation fails
for any grid cell where egs is zero during the 2010s
but nonzero at the end of the century. This happens
for <1.4% of the grid-cell-hours for most regions
examined (except 3.3% of the grid-cell-hours in the
Midwest US and 4.2% in east Asia). However, we
find that egs values that are nonzero at the 2090s
but zero at the 2010s are too small or infrequent to
impact CUO.

3. Large role for interannual variability
in stomatal uptake on CUO

CUO varies strongly from year to year, with the
2010s annual CUO relative interannual spread (coef-
ficient of variation) ranging from 3.7% to 21.4%
across regions. Meteorological variability influences
both surface ozone and gs. For example, there is
a strong correlation between ozone and temperat-
ure on daily and interannual timescales largely from
the influence of transport patterns (Vukovich 1995,
Barnes and Fiore 2013, Porter and Heald 2019, Kerr
et al 2019). Variations in ecosystem-scale evapotran-
spiration and gross primary productivity, observable
quantities related to gs, are influenced bymeteorology
on hourly-to-interannual timescales and by pheno-
logy and soil moisture, which vary more slowly, on
seasonal and interannual timescales (Wilson and Bal-
docchi 2000, Katul et al 2001, Stoy et al 2005, Chen
et al 2009, Baldocchi et al 2018).

The influence of interannual variations in egs on
annual CUO is substantially larger than the influence
of interannual variations in surface ozone for most
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Figure 2. Regional multiyear mean yearly progression of CUO for the 2010s, 2090s, and sensitivity calculations. CUOegs,2010 is
calculated with 2010s multiyear monthly mean diel cycles of effective stomatal conductance, but 2090s multiyear monthly mean
diel cycles of ozone while CUOO3,2010 is calculated with 2090s multiyear monthly mean diel cycles of effective stomatal
conductance, but 2010s multiyear monthly mean diel cycles of ozone. Only grid cells with >50% land area are included.

regions (figure 1). Variations in egs are critical for a
given year’s CUO relative to variations in ozone. Neg-
lecting the role of egs variations yields over- or under-
estimates in annual CUO by up to 6%–58% across
regions.

Only in east Asia is there a comparatively large role
for variability in surface ozone. The relative interan-
nual spread in annual egs in east Asia is weak relat-
ive to the other regions (4.1% versus 11.3%–22.8%)
while the relative interannual spread in annual ozone
ismorewithin the range of other regions (1.4% versus
1.4%–2.6%) at the 2010s, suggesting that low egs
variability leads to the larger relative role for ozone
variability there. Low egs variability follows little

hydroclimate variability—east Asia has high simu-
lated summer rainfall and low relative interannual
variation in rainfall relative to other regions.

While egs interannual and daily variability is still
more important for CUO than surface ozone inter-
annual and daily variability at the 2090s, the absolute
impact of egs variability lessens for several regions at
the 2090s (figure 1). The smaller role of egs variabil-
ity at the 2090s may be due to stomatal closure under
high carbon dioxide and thus a weaker plant sensitiv-
ity to environmental stress such as drought (e.g. Field
et al 1995, Swann et al 2016). Indeed, the model
projects increases in regional summer mean water
use efficiency (gross primary productivity divided
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Figure 3. Regional multiyear mean daily changes from the 2010s to the 2090s in effective stomatal conductance (egs) versus
surface ozone. The color of symbols is the regional multiyear mean daily egs at the 2010s. Only grid cells with >50% land area are
included.

by transpiration) of 40%–100% depending on the
region.

4. Twenty-first century changes in CUO
under RCP8.5

Figure 2 shows the progression of CUO throughout
the year at the 2010s and 2090s. CUO increases earlier
in the year by the 2090s for all regions in our ana-
lysis. However, the 21st century change in the mag-
nitude and sign of CUO by the end of the year varies
by region, with annual decreases from the 2010s to the
2090s in CUO ranging from 2 to 24 mmol O3 m−2.
Annual increases in CUO only happen in the IMW
US (3 mmol O3 m−2).

Comparing 2010s and 2090s CUO with
CUOO3,2010 and CUOegs,2010 shows egs drives the
earlier CUO increase at the 2090s (figure 2). Earlier
leaf out or higher year-round LAI at the 2090s lead to
higher springtime egs (figures S2 and S3) (available
online at stacks.iop.org/ERL/15/114059/mmedia)
and thus higher springtime CUO. Rising temper-
atures lead to earlier leaf out (e.g. Badeck et al 2004,
Richardson et al 2013, Melaas et al 2018) and the
long-term effects of carbon dioxide fertilization lead
to higher LAI (e.g. Los et al, 2013, Zhu et al 2016,
Mao et al 2016).

There are substantial 21st century increases in
winter and sometimes early spring surface ozone
under RCP8.5 over the northeast US, Midwest
US, central Europe, and east Asia in our sim-
ulations (figure S1) (Clifton et al 2020b). These

ozone increases tend to occur at times with low
egs (figure 3), and thus do not substantially impact
CUO. Increases in winter and early spring surface
ozone follow regional reductions in anthropogenic
NOx under RCP8.5 in NOx-saturated regions of the
northern midlatitudes (Clifton et al 2014). This win-
ter/early spring ozone increase is amplified by a
doubling of methane under RCP8.5 (Clifton et al
2014). Increased stratosphere-to-troposphere ozone
exchange over northern midlatitudes with climate
change and stratospheric ozone recovery (Hegglin
and Shepherd 2009, Kawase et al 2011, Banerjee et al
2016) may also contribute to higher spring surface
ozone in regions like the IMW US (e.g. Fiore et al
2015).

Large decreases in annual CUO tend to occur
in regions with large decreases in summer surface
ozone (compare figures 2 and S1). Summer ozone
decreases under RCP8.5 from the 2010s to the 2090s
in all of the regions examined here (figure S1).
Decreases in summer surface ozone follow regional
reductions in anthropogenic NOx emissions under
RCP8.5 (Gao et al 2013, Pfister et al 2014, Clifton
et al 2014, Rieder et al 2018), which are 66%–69%
for 2010 to 2090 for the regions considered. The 21st
century summer surface ozone decreases range from
−7 ppb (east Asia) to −18 ppb (southeast US) (fig-
ure S3) (Clifton et al 2020b). Differences in 2010
regionalNOx emissions, local ambient chemistry, and
dry deposition, as well as background ozone con-
tribute to regionally varying responses to changes in
regional NOx emissions.
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While springtime CUO is higher for all regions
by the 2090s, summertime CUO is lower for many
regions because summertime egs is lower by the 2090s
(figures 2 and S3). Lower summertime CUO from
changes in egs counteracts higher springtime CUO
from changes in egs for all regions except the IMW
and southwest US (compare 2010s and ozone_2010s
CUO in figure 2). Similar summertime egs at the
2010s and 2090s in the IMW and southwest US
(figure S3) is likely due to offsetting between the
expansion of vegetation coverage in these regions
(Clifton et al 2020b) and the short-term impacts of
high carbon dioxide on egs (i.e. stomatal closure)
(e.g. Field et al 1995, Betts et al 1997, Ainsworth and
Rogers 2007). Lower 2090s summer egs in the other
regions (figure S3) likely follows stomatal closure due
to high carbon dioxide.

The 21st century egs changes sometimes coun-
teract or amplify the influence of surface ozone
changes on CUO (figure 2). For the IMWUS, slightly
higher egs for most of the year increases CUO and
lower ozone decreases CUO, yielding little 21st cen-
tury CUO change by the end of the year. For most
other regions, lower egs during nonwinter months
(figure S3) leads to larger reductions in annual CUO
by the 2090s, relative to the CUO reductions due to
changes in ozone alone. For the SW US, reductions
in annual CUO mostly stem from ozone reductions.
While offsetting by temporally opposing changes in
egs and/or ozone imply that 21st century changes in
annual CUO in some regions may be relatively small,
temporal differences in the plant sensitivity to ozone
(e.g. Musselman et al 2006, Heath et al 2009) may
need to be considered in assessing how these CUO
changes affect ecosystems.

In general, 21st century changes in egs are uncer-
tain, especially with respect to the impacts of increas-
ing carbon dioxide and how other processes may
offset or amplify such impacts (Friedlingstein et al
2006, Wieder et al 2015, Terrer et al 2016, Smith
et al, 2016, 2016b, Alton 2018, Humphrey et al 2018,
Green et al 2019, Sulman et al 2019, Yuan et al 2019).
This uncertainty implies a need to explore simulated
responses of CUO to 21st century changes across dif-
ferent land models and individual model configura-
tions, as well as theoretical frameworks for stomatal
functioning (Katul et al 2010, Medlyn et al 2011,
Wang et al 2017, 2020).

5. Conclusion

Here we probe the cumulative ozone uptake by sto-
mata, a metric that accounts for the amount of ozone
entering the leaf that can cause physiological injury.
We examine the relative importance of temporal
changes in surface ozone versus stomatal uptake using
a new version of the GFDL global earth systemmodel
where the atmosphere and land are coupled through
exchanges of carbon, water, and energy as well as

dry deposition of reactive gases including ozone.
We find that accurate estimates of the cumulative
stomatal ozone uptake require considering interan-
nual variations in stomatal functioning, supporting
observational and modeling evidence that recent
changes in cumulative stomatal ozone uptake can-
not be explained by ozone changes alone (e.g. Anav
et al 2019, Ronan et al 2020). We emphasize that
our study is a sensitivity analysis of the influence of
ozone versus stomatal conductance on the cumulat-
ive stomatal ozone uptake—an assessment of changes
in ozone damage requires advanced understanding
of plant detoxification ability and responses to ozone
at regional scales. Decreases in water use efficiency
from ozone plant damage (Lombardozzi et al 2015,
Hoshika et al 2015) may increase the effect of water
stress on plants and thus alter interannual variab-
ility in stomatal activity, implying a need to better
understand how variability in stomatal ozone uptake
feeds back on itself. Nonetheless, our results sug-
gest that, without substantial changes in NOx emis-
sions from year to year, the highest ozone damage
may occur in highly productive (i.e. high stomatal
conductance) years, rather than high-ozone years.
The important role for interannual variability and
21st century changes in stomatal conductance high-
lighted here challenges the validity of widely used
approaches employing only ambient ozone concen-
trations to assess ozone plant damage and protect
vegetation.
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